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1 Introduction

Being able to segment lung lesions from chest CT-scans is a crucial step in
the automated diagnosis of patients with lung disease and the evaluation of
the latter’s progression. Also, assisting medical staff has become one of the
priorities of recent Al development, however, the medical field is one that cannot
permit blind algorithms to give their diagnosis without us knowing what they
are actually doing, explanatory Al thus become a priority in the development of
every new algorithm. Furthermore, to be able to assist medical staff (or anyone
really) the AT has to be accessible, clear and easy to use, the best Al in the world
is useless if no one can use it. We therefore experimented in the development of
an interface between a user (medical staff) and the algorithm that is going to
be doing the segmentation.

2 DMotivations and Goals

At first, this project’s goal was to participate in the COVID-19 Grand Chal-
lenge [1]. The goal of this challenge is to diagnose a patient that might be
infected with Covid-19, using a chest CT-scan of that one. The challenge’s or-
ganizers proposed a method to tackle the problem [3]. This method proved to be
difficult to recreate properly, and we were met with poor results. We therefore
decided to first segment out the lung and the different type of lesions one by
one, and, from there, evaluate the probability that the patient is infected. After
consideration, we eventually gave-up on the challenge. The goal then became
the segmentation of the lung and of multiple lesions, for now, Ground Glass
Opacities, Solidification and Pleural Effusions, and then do a diagnosis on the
patient.



3 Evolution of Methods
3.1 Data

The data has been gathered from a single source [1]. This source contains two
different datasets, one consisting of 99 chest CT-scans with annotations con-
taining ground glass opacities, solidification and pleural effusions’ (Fig. 1). The
other one consisting of 450 chest CT-scans, annoted to include lungs, Ground
Glass Opacities, and solidification (Fig. 2).
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Figure 1: dataset 1 description



I Ground Glass Opacities
Solidifications

(a) random sample

n=373

Ground Glass Opacities  Solidifications Pleural effusion
(b) lesions distribution

Figure 2: dataset 2 description

To get a maximum of training sample and avarietyin the type of lesion we
observe, we concatenate the two datasets. The main downside with this method
is that now we have an important imbalance of the type of lesions present in
the dataset (Fig. 3).
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Figure 3: Lesions distribution in mixed datasets before augmentation

To solve this problem we augment the training dataset. The augmentation
consists of rotations from -29° to 29° with a step of 2 (Fig. 4).
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Figure 4: Lesions distribution in training dataset before and after augmentation



3.2 Model Architecture

The model architecture has undergone a few evolutions, from the loss function
to the network structure itself. This section consists of the evolutions of the
different methods we tried to arrive at the one we use now. This is useful to
better explain the choices we made for our current approach as well as why it
works best.

3.2.1 U-net and Multiclass Segmentation

The data at our disposition consist of a chest CT-scan accompagned with one
masks on which all the classes are represented at the same time. Our first
approach was then the most naive one: a simple multiclass segmentation with
a categorical crossentropy loss. (Fig. 6).

We chose the U-net [6] architecture (Fig. 5) because it is already proven to
be very effective in medical imaging segmentation [2].
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Figure 5: U-net architecture

At this point we experimented with multiple number of the first layer filters
(1, 2, 4, 8, 16, 32, 64) (Table. 1) because our network might be too ”power-
ful” to learn with so few examples. We found that 64 worked best in most cases.



layer 1 layer 2 layer 3 layer 4 layer 5

1 2 4 8 16

2 4 8 16 32
4 8 16 32 64
8 16 32 64 128
16 32 64 128 256
32 64 128 256 512
64 128 256 512 1024

Table 1: Number of filters per layer in U-net
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Figure 6: Multiclass Segmentation of lesions
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Figure 7: Green: GGO; red: solidifications; blue: pleural effusions.

We can see here that the network has trouble segmenting small regions and
differentiate between the different types of these legions.



3.2.2 U-net and Binary Segmentation of Each Class Individually

To solve the segmenting issues mentioned above, we tought of using 3 dedicated
networks one for each lesion (Fig. 8).
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Figure 8: Binary Segmentation of individual lesions
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Figure 9: Green: GGO; red: solidification; blue: pleural effusions. The yellow
lesions are where the networks are in conflict, here the network think that there
is both GGO and solidification at the places where we see yellow.

3.2.3 Cascaded U-net and Binary Segmentation of Multiple Classes

The performance of the segmentation of individual classes was not doing better
than the multi class model it was even a bit worse. However, we still thought
that having dedicated networks for each lesion would lead to superior results
so, we kept this idea and try to improve on it. One improvement that came to
mind was, segmenting larger regions by adding together the lesions to segment.
Thus, to be able to segment out all 3 classes we still only need 3 networks.
The first to segment out all classes, the second to segment out two out of the
previous 3 and the last one to segment 1 out of the previous 2. To facilitate
the work for the network we feed the concatenate the output of the previous
network with the input of the one coming after it thus resulting in cascading
networks (Fig. 11). This method has been shown to work with brain tumors
where the network first segmented the tumor and sub-networks then used that



information to segment-out finer and details [9, 10]

The fact that in medical imaging the zone to segment is often minuscule
compared to the background makes it so that we often get trap in a local min-
imum of the binary crossentropy loss function when training, this leads to a
network that is strongly biased to recognize background everywhere and so, the
zone of interest is often missed by the network. To tackle that problem we need
to have a loss function that will be strongly biased towards the zone of interest,
(the loss will be equal to 1 if no foreground pixels are recognized even though
all background pixels are correctly classified). We therefore introduce the Dice
function (equation) which, when transformed to a loss function, satisfies this
particularity. However, we found it difficult to make the Dice loss converge, we
therefore used a linear combination of the Binary crossentropy and Dice loss [5]:

. 1 1 . 2.Y,-Y,

Where Y is the ground thruth, Y the output of the network, both of the b*"
image and NV is the batch size.

Another option was to use use structural similarity loss, again in conjunction
with BCE, however this led to poor results.
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Figure 10: Green: GGO; red: solidifications; blue: pleural effusions.

We can see from the dices that this model does indeed better than the
previous one.
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Figure 11: Cascading U-nets

3.2.4 Cascaded U-net++

During our research we found a variant of the U-net architecture more efficient
towards segmenting lesions that varies greatly in size, the U-net++ architec-
ture [12]. We found that the objects we are working with (lung lesions) tend to
vary greatly in both size and shape we therefore implemented this architecture.
(Fig. 13)

The U-net++ architecture differs from the classic U-net in 2 ways:
First the introduction of dense blocks in as a remplacement for the skip connec-
tions.
Second, the possibility to use as output the mean of the four intermediate con-
volutions of the first layer (Fig. 12). We will call that the accurate mode, in
contrast with the classic mode (use only one output) that we will refer as speed
mode (this is the nomenclature used by the original paper) [12].
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Figure 12: U-net++ architecture

This helps getting better results for lesions varying greatly in size because

the receptive field of each intermediate convolution is different and thus will be
more prone to pick up differently sized regions.
We therefore used the accurate mode to segment the lesions and normal mode
to segment the lung. We do not use the accurate mode for the lungs because the
do not vary in size (or only in small amount) and we will then see a performance
drop [12].

The addition on convolutions in the skip connections make it so that the
number of parameters is much larger than a classic U-net for the same number
of first layer filters. Thus we only use 32 filters in the first layer of the U-net++
architecture. Using 64 filter in the first layer make it so that there is 36 millions
parameters, this only around 2 millions more than a classic U-net however,
the number of connection between those layers is much bigger, so big that the
training becomes difficult (or impossible) on a single GPU.
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Figure 13: Cascading U-nets++
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Figure 14: Green: GGO; red: solidifications; blue: pleural effusions.
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3.2.5 Comparison of results and limitations

To our surprise, the multiclass model is generaly at least as accurate as the
cascaded U-net++ model. Our theory is that the innacuracies of the cascaded
U-net++ comes from the cascade itself. Indeed, innacuracies from the first lay-
ers propagate and get amplified the deeper we travel in the cascade. We could
therefore be led to believe that a multiclass model using the U-net++ architec-
ture would be the most efficient.

Even though we tried our best to reduce biases in the data and in our meth-
ods, there still remains many components limiting our findings.

There is in a first time limitations concerning our data. The data we use
come from only one source, it consists of overall good quality images, of sick
patients. This poses a problem because the model is biased towards findings
lesions (even if there is none) and performs very poorly on lower quality im-
ages (maybe even on better quality because the informations present will not
be the same as during the training). Furthermore, we only are able to segment
3 lesions type, again this poses a problem in real world use. Finally CT-scans
usualy come in slices of one patients, representing 3D informations, our model
only looks at one slice at a time and does not take into account other slices of
that same patient. To tackle that problem we could use a 3D segmenting archi-
ture however this make it impossible to analise only one slice of a patient, (if
only one or a few slices are available we cannot use a 3D U-net), thus maybe a
recurent model could solve that issue, taking in as many slices of a same patient
and taking every one of them into account for the segmentation.

Then we have limits concerning the comparaison of the models.

First, we did not have the time to train all the models multiple times, only
the multiclass and cascaded U-net++ have been trained 3 times, and aver-
age, however, we found that the results for all the trainings dones we varying
only slightly. Furthermore, the testing sets were unbalanced lesions-wise, which
makes the results, for the pleural effusions not representative of real perfor-
mance.

3.2.6 Gaussian normalisation

We normalize all images that goes into the models using a Gaussian normalisa-
tion:

X — mean(X)

stdDev(X) @)

gaussNorm(X) =

14



3.2.7 Census Transform

To recognise lungs in a picture we do not need to see the any texture varia-
tion, the only relevant thing to look for is the structure of the lung moreover
in CT-scan, different patients can have different lung tissue density and as a
consequence the value intensity of the zone of interest (the lung) will change.
We could easely recognise the lungs in a binary image in contrast with the le-
sions for which we need to identify texture differences inside the lung. Thus to
eliminate texture variation in different CT-scans and highlight the structures
of the different element present in the image we use a variation of the Census
transform [11] (Fig. 15).

Figure 15: Census transform with range = 15

4 Explainable Al

One of the main challenge of Al today is being able to explain the decisions
that it takes. In fact, being able to see more clearly into these algorithms is a
prerquisite for it to be available in a critical environment, one cannot trust an
AT with the life of a patient if we are unable to understand the inner workings
of that AI, the same goes for self-driving and countless other applications.
With this in mind, we experimented with multiple approaches trying to explain
the decisions of our four networks and the differences in their performances.
This has proven to be difficult as explainable AT (xAl) is a fairly recent field
of research and not much literature has been found on the subject of xAl for
image segmentation.

We first tried using the features maps of each networks to see what was activating
the network, and have a first impression of the zones of interests. However this
is a very poor insight into the network’s inner workings.

We therefore thought about applying a method used for classifications tasks
called Integrated Gradients (cite). However, this method proved to be difficult
to implement for image segmentation.

4.1 Features Maps

The features map of a network are the outputs of the convolutional layers inside
it. By looking at those activations we hope to determine what area of the image
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“excites” or “inhib” the network the most, we should be able to detect the
outline of the lung and hopefully the textures of the lesions as they are being
percepted by the network.

Figure 16: 16 feature maps (randomly selected out of 512)of the output of the
fourth layer

We show here the features map at the output of the fourth encoding layer
because it is the one where we can most clearly see the activations of point of
interest (Fig. 16). The results are as expected, we can see the perimeter of the
lung as well as the lesions being picked up by the convolutions in each layer.
We do not believe this method to be useful in making sense of the network’s
choice because of the broad interpretability of the feature maps, the deeper we
go in the model, the more abstract the activations become.

This observation led us to try the comming method.

4.2 Integrated Gradients

Integrated gradients is a method consisting of attributing an certain level of
importance in the decision of a network to its input. It is commonly use in image
classification, where we attribute an importance in the decision of a particular
class, to each pixels of an image [7].

IntegratedGrads;""" " (z) :=

x R—
€X; m

XiaF:ﬂ +Ex@-a)) 1 3)
k=1

Where ¢ is a feature (an idividual pixel in our case), x is the input (image
tensor), x’ is the baseline (all zeros image tensor in our case), k is a scaled feature
pertubation constant, m is the number of steps in the rieman approximation of
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the integral.

It can also be used in sentiment analysis and other classification tasks.
However to the best of our knowledge this technic has rarely been used in the
context of image segmentation, and we are the first to try to implement the
integrated Gradients algorihtm for image segmentation. One paper did to pro-
vide visual explaination for semantic image segmentation but using Grad-CAM
another gradient based algorithm for that purpose [8].

Implementation of Integrated gradients for image segmentation has proven
to be difficult. We only concentrated on binary segmentation in a first time.
The process was as follow: first take a positively classified pixel and apply the
integrated gradients technic on it, that is, highlight what pixels in the input
image contributed to the classification of this pixel as zone of interest.

Then we tried to get the integrated gradient to every positively classified

pixels in the image and show the results in as one heatmap to show what parts
of the image was responsible to the classification of the whole zone of interest,
we hoped to see clear structures to be highlighted, for example, the perimeter
of the lung, which would indicate that the network knows that a lesion can only
be found inside a lung.
However, our images being 512px by 512px the number of correctly classified
pixels can explode rapidely, (as much as 20,000). This made the algorithm very
slow and we are still in the process of finding a solution for that problem, (find
a way of getting the gradients for all the pixels as fast as possible). In the
meanwhile we ran the integrated gradients algorithm with only a few number
of steps and by skiping one in every 5 pixels (see explication of Integrated
gradients) and got those results:(Fig. 17). Those results show us something
very interesting, the model is not looing at the context in which the lesions
finds himself, it is only looking at the texture changes in the image to determine
if the pixel is a lesions or not. This is obviously a huge problem which could be
solve by giving it images with similar texture difference but without the lung
and tell the network that it is not a lesion. Hopefuly this will be enoug hfor the
model to learn about context.
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Figure 17: Integrated Gradients for 1 in every 5 lesions pixels

5 Interface

For people to be able to benefit from our research it is of most importance
that it presents itself in the simplest manner possible. That is why we found it
important to develop a web interface to use the segmentation algorithms. This
interface only has two buttons, a button to load the image we want to segment
and one to segment said image. Once we click on the segment image we are
presented with 3 images: the original image, the image with the segmented
lungs highlighted and the images with the different type of lesions highlighted
in different colors (a legend is found next to the images to discern between
the lesions). Then, we also find a percentage of lung coverage for each lesions
(Fig. 18).

6 Conclusion

This project had for goal to investigate methods for efficient and accurate seg-
mentation in lesions in chest CT-scans, developping a sense of what the Al was
doing “under the hood” and presenting an interface for a potential end user.
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Figure 18: screenshots of the application, the second image for the same CT-
scan as the first it is just scrolled down

We will now do a roundup of those three objectives, what has been done and
what is left to explore.

The most important objective was to find a way to segment out the lesions in a
chest CT-scan, for use in diagnosis of patients, we found that the state of the art,
even if performant, was not accurate enough for reliable diagnosis, we thus tried
multiple method involving cascaded models and changes in the architecture of
the models (U-net++), loss function (Dice loss) and preprocessing (Census).
Even if promising we do not think that these method make for a model efficient
enough for the real world (again it might be a big lack in the diversity of the
data). Some exploration paths would be implementing the U-net++ for mul-
ticlass segmentations, and a recurent neural network to take advantage of the
relationship between the many slices of a patient (without the bulk and hassle
of a 3D model).

During the development of a model an immensly important step was the com-
prehension of that model’s inner working, we wanted to find a way for it to
explain itself when it made a decision and have a sense of why it was more effi-
cient. In that regard we managed to roughly implement the integrated gradients
algorithm for image segmentation (though there still is a lot of work to do) that
allowed us to know that the model is solely looking at the texture difference in
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the image (without context of the lung).

Finally, the user interface is usable and runs relatively fast on a dedicated GPU
(a few seconds for one image with the cascaded U-net++) however it is to be
greatly improved by adding the possibilty to upload nibib images, download the
results (images and lesions percentage) and upload multiple slices at the same
time (for comparaison).
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